EE, DR, and DER Potential Study – Draft Results

Entergy Louisiana, LLC. (ELL)

**Technical Conference** 





₩ F

01/27/2022



# Agenda

- Introduction
- Study Overview
- Energy Efficiency Achievable Potential Draft Forecast
- Demand Response Achievable Potential Draft Forecast
- Distributed Energy Resources Achievable Potential Draft Forecast 7
- >Q&A
- > Appendix

# Introduction

### **ICF Presentation Team**



Ali Bozorgi, PhD Project Manager



Ben Staver, MS Energy Efficiency



Praneeth Aketi, PhD Demand Response



**Craig Schultz, MBA** Distributed Energy Resource



### Ben Foster, MBA Distributed Energy Resource

# **ICF Energy Overview**

- **Recognized energy experts since 1969**
- Support all major Federal Government agencies on energy issues
  - DOE, EPA, FERC, DOI, DHS, DOS, USAID, DOD, DOT
- Support all major energy NGOs
  - EEI, API, INGAA, AGA, NEI, NRDC, EDF
- Worked with almost every major energy company in North America, and many overseas
  - 70+ top utility companies in North America
  - Implement 150+ Energy Efficiency Programs
- Approximately 1,100 energy professionals across North America, U.K., India, China, and Ghana



### **Power and Transmission**

# Study Overview

### **Study Overview**

- Objective: Support 2023 ELL's IRP
- Demand side resources covered:
  - Energy Efficiency (EE)
  - Demand Response (DR)
  - Distributed Energy Resources (DER)
    - BTM Solar
    - BTM Storage
- Forecast time horizon: 20 years
  - (2023 2042)
- ELL service territory including legacy ELL and EGSL

8

### **Bottom-up Market Potential Analysis Modeling Approach**



# Energy Efficiency Achievable Potential Draft Forecast



Our approach to achievable potential modeling is an evidence-based, data driven approch, which is based on a detailed benchmarking of actual EE program performance.

Two scenarios modelled:

- Reference Case Current ELL programs were modelled largely based on current program designs and current level of performance, but with additional measures.
- High Case (Expanded Programs) Includes new programs that ELL does not currently offer and expanded existing ELL programs. Expansion of existing programs is assumed based on benchmarking of comparable programs in South.

### **Programs Modeled**

## **Current Programs**

- Residential
  - A/C Solutions
  - Home Performance with Energy Star
  - Income-Qualified Weatherization
  - Multifamily Solutions
  - Manufacture Homes
  - Retail Lighting & Appliances
  - School Kits and Education
- Commercial & Industrial
  - Large C&I Solutions
  - Small Commercial Solutions

# New Programs

### Residential

- Appliances Recycling
- Behavioural / Home Energy Report
- Midstream HVAC
- Prepay
- Commercial & Industrial
  - Agricultural Pilot\*
  - Industrial SEM
  - Midstream Lighting
  - Retro-commissioning
  - Small Business Direct Install

### Annual portfolio savings could be more than double by 2032

Average incremental (annual) verified MWh savings in ELL Program Year 5 & 6 compared to forecasts for this study in 2027 and 2032



MWh

139.868

### **Cumulative MWh Savings over 20 years**

Total portfolio (cumulative) savings could grow from ~49 GWh in 2023 to nearly 1500 GWh by 2042 Net cumulative portfolio MWh savings • Reference case • High Case 1,500,000 1,000,000 MWh 500,000 



<sup>\* %</sup> savings are based on 2019 MWh consumptions

### Share of MWh Savings by 2042



### **Cumulative Savings by Sector**

### In the Expanded scenario residential and commercial sector level savings are about equal and together comprise 90% of total savings



### **Cumulative Savings by Sector**

Residential and commercial savings levels could reach up to 4.1% and 6.3% of sector sales, respectively, by 2042



## **Cumulative Savings by Program – Residential**

### Retail lighting and appliance is the biggest residential savings opportunity Expanded programs could double residential savings by 2042



Residential net cumulative program savings in 2027, 2032, 2042

- Home Performance w/ ENERGY STAR

### Cumulative Savings by Program – C&I

### Expanded programs could increase C&I savings by 791 GWh by 2042

C&I net cumulative program savings in 2027, 2032, 2042



Large Commercial & Industrial Solutions

### **Cost and Cost-effectiveness Metrics – Residential Programs**

| Reference Case                  | Actual Cost (\$ mil) | Annua | Annual Program Costs (2022 \$ mil) |       |       |      | CE Metrics              |  |
|---------------------------------|----------------------|-------|------------------------------------|-------|-------|------|-------------------------|--|
| Program                         | PY6                  | 2027  | 2032                               | 2037  | 2042  | TRC  | Levelized Cost (\$/kWh) |  |
| AC Solutions                    | \$0.9                | \$0.8 | \$0.8                              | \$0.8 | \$0.8 | 3.59 | \$0.01                  |  |
| Home Performance w/ ENERGY STAR | \$1.0                | \$1.0 | \$1.0                              | \$1.0 | \$1.0 | 2.70 | \$0.02                  |  |
| Income Qualified Solutions      | \$0.6                | \$0.6 | \$0.7                              | \$0.7 | \$0.7 | 2.01 | \$0.04                  |  |
| Manufactured Homes              | \$0.8                | \$0.6 | \$0.6                              | \$0.6 | \$0.6 | 3.62 | \$0.02                  |  |
| Multifamily Solutions           | \$0.4                | \$0.6 | \$0.5                              | \$0.5 | \$0.5 | 1.76 | \$0.04                  |  |
| Retail Lighting and Appliances  | \$1.0                | \$0.7 | \$0.7                              | \$0.7 | \$0.7 | 3.20 | \$0.01                  |  |
| School Kits & Education         | \$0.3                | \$0.3 | \$0.3                              | \$0.3 | \$0.3 | 3.20 | \$0.02                  |  |
| Total                           | \$4.9                | \$4.7 | \$4.5                              | \$4.5 | \$4.5 | 2.93 | \$0.02                  |  |

| High Case                       | Actual Cost (\$ mil) | Annua | Annual Program Costs (2022 \$ mil) |        |       |      | CE Metrics              |  |
|---------------------------------|----------------------|-------|------------------------------------|--------|-------|------|-------------------------|--|
| Program                         | PY6                  | 2027  | 2032                               | 2037   | 2042  | TRC  | Levelized Cost (\$/kWh) |  |
| AC Solutions                    | \$0.9                | \$0.9 | \$1.1                              | \$1.2  | \$1.2 | 3.62 | \$0.01                  |  |
| Appliance Recycling             | NA                   | \$0.3 | \$0.6                              | \$0.6  | \$0.6 | 1.51 | \$0.05                  |  |
| Behavioral / Home Energy        | NA                   | \$0.3 | \$0.4                              | \$0.6  | \$0.6 | 1.83 | \$0.03                  |  |
| Home Performance w/ ENERGY STAR | \$1.0                | \$1.2 | \$2.0                              | \$2.3  | \$2.3 | 2.73 | \$0.02                  |  |
| Income Qualified Solutions      | \$0.6                | \$0.7 | \$0.9                              | \$1.0  | \$1.1 | 1.99 | \$0.04                  |  |
| Manufactured Homes              | \$0.8                | \$0.8 | \$1.2                              | \$1.3  | \$1.2 | 3.65 | \$0.02                  |  |
| Midstream HVAC                  | NA                   | \$0.0 | \$0.0                              | \$0.1  | \$0.1 | 1.47 | \$0.01                  |  |
| Multifamily Solutions           | \$0.4                | \$0.7 | \$1.1                              | \$1.0  | \$0.9 | 1.79 | \$0.04                  |  |
| Prepay                          | NA                   | \$0.0 | \$0.0                              | \$0.1  | \$0.1 | 2.13 | \$0.03                  |  |
| Retail Lighting and Appliances  | \$1.0                | \$0.8 | \$1.5                              | \$1.7  | \$1.7 | 3.22 | \$0.01                  |  |
| School Kits & Education         | \$0.3                | \$0.3 | \$0.3                              | \$0.3  | \$0.3 | 3.20 | \$0.02                  |  |
| Total                           | \$4.9                | \$6.1 | \$9.2                              | \$10.1 | \$9.9 | 2.82 | \$0.02                  |  |

### Cost and Cost-effectiveness Metrics – C&I Programs

| Reference Case                         | Actual Cost (\$ mil) | Annual Program Costs (2022 \$ mil) |         |             | CE Metrics |      |                         |
|----------------------------------------|----------------------|------------------------------------|---------|-------------|------------|------|-------------------------|
| Program                                | PY6                  | 2027                               | 2032    | 2037        | 2042       | TRC  | Levelized Cost (\$/kWh) |
| Large Commercial & Industrial Solution | s \$2.3              | \$2.8                              | \$2.9   | \$3.0       | \$3.0      | 3.55 | \$0.01                  |
| Small Commercial Solutions             | \$1.6                | \$1.7                              | \$1.6   | \$1.6       | \$1.6      | 2.38 | \$0.02                  |
| Total                                  | \$3.9                | \$4.5                              | \$4.6   | \$4.5       | \$4.6      | 3.12 | \$0.02                  |
| Lligh Case                             | Actual Coat (& mil)  | <b>A nn u o</b>                    | Dragram | Secto (202) | 0 ¢ m;il)  |      | CE Matrice              |

| High Case                               | Actual Cost (\$ mil) | Annua | Annual Program Costs (2022 \$ mil) |        |        |      | CE Metrics                   |  |
|-----------------------------------------|----------------------|-------|------------------------------------|--------|--------|------|------------------------------|--|
| Program<br>▲                            | PY6                  | 2027  | 2032                               | 2037   | 2042   | TRC  | Levelized Cost (\$/kWh)<br>▼ |  |
| Agriculture                             | NA                   | \$0.3 | \$0.3                              | \$0.3  | \$0.4  | 2.57 | \$0.03                       |  |
| Industrial SEM                          | NA                   | \$1.3 | \$1.4                              | \$1.4  | \$1.4  | 1.15 | \$0.03                       |  |
| Large Commercial & Industrial Solutions | \$2.3                | \$2.3 | \$3.6                              | \$4.0  | \$4.0  | 2.40 | \$0.02                       |  |
| Midstream Lighting                      | NA                   | \$2.3 | \$3.4                              | \$3.8  | \$3.7  | 2.77 | \$0.02                       |  |
| Retrocommissioning                      | NA                   | \$0.4 | \$0.7                              | \$0.8  | \$0.8  | 2.95 | \$0.01                       |  |
| Small Business Direct Install           | NA                   | \$0.1 | \$0.2                              | \$0.2  | \$0.2  | 1.48 | \$0.01                       |  |
| Small Commercial Solutions              | \$1.6                | \$1.9 | \$2.5                              | \$2.5  | \$2.5  | 1.90 | \$0.01                       |  |
| Total                                   | \$3.9                | \$8.7 | \$12.1                             | \$13.0 | \$13.0 | 2.54 | \$0.02                       |  |

# Demand Response Achievable Potential Draft Forecast



### **Programs and Scenarios**

- Two scenarios
  - Reference Case Levels of participation corresponding to an expected level of maximum market share, with a Bass diffusion curve taking the participation from existing levels to the maximum market share level
  - High Case Higher participation rates, with the maximum market share usually set to about 50% higher than the maximum market share of the reference case
- All programs are opt-in.



Programs highlighted in green shade clear a program TRC of 1 (or, as in the case of industrial interruptible program, have been included since it is an existing program as well) and show up with non-zero savings in the achievable potential

- modes of delivery
- Bring your own thermostat (BYOT) Ο
- Direct Install (DI) Ο
- Interruptible Load program comprises of
  - rates,
- Ο approved interruptible riders
- Ο for the new, LPSC-approved interruptible riders

# Smart Thermostat Program was modeled with two

existing participants expected to continue at legacy

new participants to be enrolled in the new LPSC-

New participants to be enrolled in a separate, new program for smaller commercial customers not eligible

### Summer MW Savings – All sectors for 2027, 2032



### 1,038

1,000

## Summer MW Savings – All sectors



### Share of MW Savings by 2042



### Summer MW Savings by Sector

Net Cumulative Savings by Sector in 2027, 2032, 2042

Sectors • Residential • Commercial • Industrial



쏢

### MW % Savings by 2042

NOTE: The % savings are calculated using 2019 peak as the baseline



### Net Cumulative MW Savings in 2042 by Sector and Scenario

### **Residential Summer MW Savings**

### Residential Net Cumulative MW Savings by Program in 2027, 2032, 2042

Programs • Smart Thermostat • Direct Load Control - Water End Uses





### **Commercial Summer MW Savings**

### Commercial Net Cumulative MW Savings by Program in 2027, 2032, 2042

Programs • Smart Thermostat • Interruptible • Direct Load Control - Water End Uses • Agriculture - DLC



## Industrial Summer MW Savings



# Program composition, by sector, in 2042, Cumulative Demand Savings MW



### DR Cost & Cost-effectiveness metrics – All Sectors

### **Reference Case**

|             |                                      | Annual Program Costs (2022 \$ Mil.) |               |               |               | Cost Effective (CE) Metrics |                           |                              |
|-------------|--------------------------------------|-------------------------------------|---------------|---------------|---------------|-----------------------------|---------------------------|------------------------------|
| Sector      | Program                              | 2027                                | 2032          | 2037          | 2042          | Applicable<br>Ratio         | Benefit-<br>Cost<br>Ratio | Levelized<br>Cost<br>(\$/kW) |
|             | Direct Load Control – Water End Uses | \$ 3.7                              | \$ 8.4        | \$ 7.1        | \$ 7.9        | TRC                         | 1.2                       | \$ 149.2                     |
| Residential | Smart Thermostat                     | \$ 4.1                              | \$ 10.8       | \$ 10.2       | \$ 11.O       | TRC                         | 4.4                       | \$ 56.6                      |
|             | Sector Total                         | \$ 7.8                              | \$ 19.2       | \$ 17.3       | \$ 18.9       | TRC                         | 2.8                       | \$ 77.7                      |
|             | Agriculture - DLC                    | \$ 0.6                              | \$ 1.9        | \$ 2.0        | \$ 2.0        | TRC                         | 3.6                       | \$ 42.7                      |
|             | Direct Load Control – Water End Uses | \$ 0.2                              | \$ 0.5        | \$ 0.4        | \$ 0.4        | TRC                         | 1.2                       | \$ 140.5                     |
| Commercial  | Interruptible - New                  | \$ 3.2                              | \$ 8.6        | \$ 9.2        | \$ 9.3        | UCT                         | 1.6                       | \$ 54.1                      |
|             | Smart Thermostat                     | <b>\$</b> 0.1                       | <b>\$</b> 0.3 | <b>\$</b> 0.3 | <b>\$</b> 0.3 | TRC                         | 2.6                       | \$ 70.5                      |
|             | Sector Total                         | \$ 4.1                              | \$ 11.3       | \$ 11.9       | \$ 12.0       | UCT*                        | 1.6                       | \$ 53.4                      |
|             | Interruptible - New                  | \$ 1.6                              | \$ 4.4        | \$ 4.8        | \$ 4.8        | UCT                         | 2.6                       | \$ 32.7                      |
| Industrial  | Interruptible - Existing             | \$ 37.5                             | \$ 37.5       | \$ 37.5       | \$ 37.5       | UCT                         | 0.5                       | \$ 153.3                     |
|             | Sector Total                         | \$ 39.1                             | \$ 41.9       | \$ 42.3       | \$ 42.3       | UCT                         | 0.7                       | \$ 119.8                     |
|             | Portfolio Total**                    | \$ 13.5                             | \$ 35.0       | \$34.0        | \$35.7        | TRC                         | 3.1                       | \$ 58.6                      |

\* Commercial sector level UCT is reported since Interruptible is the largest contributor to costs and savings

\*\* Portfolio total includes TRC for 'Interruptible – New' for C&I; 'Interruptible – Existing' is not included in this calculation.

## DR Cost & Cost-effectiveness metrics – All Sectors

### High Case

|             |                                      | Annual Program Costs (2022 \$ Mil.) |         |               |                | Cost Effective (CE) Metrics |                           |                              |
|-------------|--------------------------------------|-------------------------------------|---------|---------------|----------------|-----------------------------|---------------------------|------------------------------|
| Sector      | Program                              | 2027                                | 2032    | 2037          | 2042           | Applicable<br>Ratio         | Benefit-<br>Cost<br>Ratio | Levelized<br>Cost<br>(\$/kW) |
|             | Direct Load Control – Water End Uses | \$ 5.5                              | \$ 12.5 | \$ 10.5       | \$ 11.8        | TRC                         | 1.3                       | \$ 147.9                     |
| Residential | Smart Thermostat                     | \$ 4.1                              | \$ 10.8 | \$ 10.2       | <b>\$</b> 11.O | TRC                         | 4.5                       | \$ 56.6                      |
|             | Sector Total                         | \$ 9.6                              | \$ 23.4 | \$ 20.7       | \$ 22.8        | TRC                         | 2.5                       | \$ 84.7                      |
|             | Agriculture - DLC                    | \$ 0.8                              | \$ 1.9  | \$ 2.0        | \$ 2.0         | TRC                         | 3.9                       | \$ 40.9                      |
|             | Direct Load Control – Water End Uses | \$ 0.3                              | \$ 0.6  | <b>\$</b> 0.5 | \$ 0.6         | TRC                         | 1.3                       | \$ 133.9                     |
| Commercial  | Interruptible – New                  | \$ 3.8                              | \$ 10.4 | \$ 11.1       | \$ 11.1        | UCT                         | 1.9                       | \$ 46.6                      |
|             | Smart Thermostat                     | <b>\$</b> O.1                       | \$ 0.4  | \$ 0.4        | \$ 0.4         | TRC                         | 3.2                       | \$ 64.4                      |
|             | Sector Total                         | \$ 5.0                              | \$ 13.3 | \$ 14.0       | \$ 14.1        | UCT*                        | 1.8                       | \$ 47.5                      |
|             | Interruptible - New                  | \$ 1.8                              | \$ 5.0  | \$ 5.3        | \$ 5.3         | UCT                         | 4.0                       | \$ 21.6                      |
| Industrial  | Interruptible - Existing             | \$ 37.5                             | \$ 37.5 | \$ 37.5       | \$ 37.5        | UCT                         | 0.5                       | \$ 153.3                     |
|             | Sector Total                         | \$ 39.3                             | \$ 42.5 | \$ 42.8       | \$42.8         | UCT                         | 0.9                       | \$ 101.4                     |
|             | Portfolio Total**                    | \$ 16.4                             | \$ 41.7 | \$ 40.0       | \$ 42.2        | TRC                         | 3.69                      | \$ 52.8                      |

\* Commercial sector level UCT is reported since Interruptible is the largest contributor to costs and savings

\*\* Portfolio total includes TRC for 'Interruptible – New' for C&I; 'Interruptible – Existing' is not included in this calculation.



# Distributed Energy Resources (DER) Achievable Potential Draft Forecast

### Behind-the-Meter (BTM) DER Technology & Customer **Combinations Forecasted**



Battery

Battery

### **Overview of DER Analytic Approach**



# DER Cumulative Installed Capacity: <u>Reference Scenario</u> Forecast for

**Selected Years** (data in MW<sub>AC</sub>; for battery storage, "power" capacity is shown)

| Year | <b>Residential PV</b> | C&I PV | Residential<br>Battery<br>(paired with PV) | C&I Battery<br>(paired with<br>PV) | Standalone C&I<br>Battery |
|------|-----------------------|--------|--------------------------------------------|------------------------------------|---------------------------|
| 2023 | 80                    | 8      | < 1                                        | < 1                                | < 1                       |
|      |                       |        |                                            |                                    |                           |
| 2033 | 253                   | 46     | 15                                         | 2                                  | < 1                       |
| 2034 | 275                   | 51     | 18                                         | 2                                  | < 1                       |
| 2035 | 295                   | 56     | 21                                         | 3                                  | < 1                       |
| 2036 | 315                   | 60     | 25                                         | 3                                  | < 1                       |
| 2037 | 334                   | 65     | 28                                         | 4                                  | < 1                       |
| 2038 | 353                   | 70     | 32                                         | 4                                  | < 1                       |
| 2039 | 373                   | 75     | 36                                         | 5                                  | 1                         |
| 2040 | 393                   | 80     | 40                                         | 5                                  | 1                         |
| 2041 | 413                   | 86     | 45                                         | 6                                  | 1                         |
| 2042 | 433                   | 91     | 50                                         | 7                                  | 1                         |

Capacity forecast data for the years 2024–2032 are displayed later in an Appendix to this presentation. ÷ CF

# DER Cumulative Installed Capacity: <u>High Scenario</u> Forecast for Selected

**Years** (data in MW<sub>AC</sub>; for battery storage, "power" capacity is shown)

| Year | <b>Residential PV</b> | C&I PV | Residential<br>Battery<br>(paired with PV) | C&I Battery<br>(paired with<br>PV) | Standalone C&I<br>Battery |
|------|-----------------------|--------|--------------------------------------------|------------------------------------|---------------------------|
| 2023 | 85                    | 8      | < 1                                        | < 1                                | < 1                       |
|      |                       |        |                                            |                                    |                           |
| 2033 | 379                   | 57     | 52                                         | 5                                  | 2                         |
| 2034 | 415                   | 64     | 62                                         | 6                                  | 2                         |
| 2035 | 450                   | 70     | 73                                         | 7                                  | 3                         |
| 2036 | 484                   | 76     | 84                                         | 8                                  | 3                         |
| 2037 | 516                   | 83     | 96                                         | 9                                  | 3                         |
| 2038 | 549                   | 89     | 109                                        | 11                                 | 4                         |
| 2039 | 582                   | 96     | 122                                        | 12                                 | 4                         |
| 2040 | 615                   | 102    | 137                                        | 14                                 | 5                         |
| 2041 | 649                   | 109    | 152                                        | 15                                 | 5                         |
| 2042 | 683                   | 115    | 169                                        | 17                                 | 5                         |

Capacity forecast data for the years 2024–2032 are displayed later in an Appendix to this presentation. 

### **Cumulative Distributed PV Capacity Forecast:** Share by Customer Class in 2042



### **Forecasted Share of ELL Residential Customer Population Adopting PV: Reference Scenario**



In mid-2021, about 1% of ELL's residential customers had interconnected PV systems. •

By 2042, the <u>reference scenario</u> forecasts that about 7% (of the bigger residential customer base at that • time) will adopt PV. In the high scenario, the corresponding 2042 PV adoption value is 11%.

## Forecasted Annual <u>Residential</u> PV Production (in MWh)



This production includes both PV electricity consumed on-site and PV electricity exported back to the •

utility. Production data shown are grossed up for transmission and distribution losses.

## **Forecasted Annual Commercial PV Production (in MWh)**



This production includes both PV electricity consumed on-site and PV electricity exported back to the • utility. Production data shown are grossed up for transmission and distribution losses. 





# Appendix

### DER Cumulative Installed Capacity: <u>Reference Scenario</u> Forecast for 2023-2032 (data in MW<sub>AC</sub>; for battery storage, "power" capacity is shown)

| Year | <b>Residential PV</b> | C&I PV | Residential<br>Battery<br>(paired with PV) | C&I Battery<br>(paired with<br>PV) | Standalone C&I<br>Battery |
|------|-----------------------|--------|--------------------------------------------|------------------------------------|---------------------------|
| 2023 | 80                    | 8      | < 1                                        | < 1                                | < 1                       |
| 2024 | 87                    | 10     | < 1                                        | < 1                                | < 1                       |
| 2025 | 96                    | 13     | 1                                          | < 1                                | < 1                       |
| 2026 | 109                   | 16     | 1                                          | < 1                                | < 1                       |
| 2027 | 125                   | 19     | 2                                          | < 1                                | < 1                       |
| 2028 | 143                   | 23     | 3                                          | < 1                                | < 1                       |
| 2029 | 163                   | 27     | 5                                          | 1                                  | < 1                       |
| 2030 | 187                   | 32     | 7                                          | 1                                  | < 1                       |
| 2031 | 209                   | 36     | 10                                         | 1                                  | < 1                       |
| 2032 | 232                   | 41     | 12                                         | 1                                  | < 1                       |

• Capacity forecast data for the years 2033–2042 are displayed earlier in this presentation.

| Standal | one C&I |
|---------|---------|
| Bat     | tery    |

# DER Cumulative Installed Capacity: <u>High Scenario</u> Forecast for 2023-

**2032** (data in  $MW_{AC}$ ; for battery storage, "power" capacity is shown)

| Year | <b>Residential PV</b> | C&I PV | Residential<br>Battery<br>(paired with PV) | C&I Battery<br>(paired with<br>PV) | Standalone C&I<br>Battery |
|------|-----------------------|--------|--------------------------------------------|------------------------------------|---------------------------|
| 2023 | 85                    | 8      | < 1                                        | < 1                                | < 1                       |
| 2024 | 96                    | 11     | 1                                          | < 1                                | < 1                       |
| 2025 | 112                   | 15     | 2                                          | < 1                                | < 1                       |
| 2026 | 132                   | 18     | 4                                          | < 1                                | < 1                       |
| 2027 | 158                   | 23     | 7                                          | 1                                  | < 1                       |
| 2028 | 187                   | 27     | 10                                         | 1                                  | < 1                       |
| 2029 | 221                   | 33     | 16                                         | 2                                  | 1                         |
| 2030 | 262                   | 39     | 24                                         | 2                                  | 1                         |
| 2031 | 302                   | 45     | 32                                         | 3                                  | 1                         |
| 2032 | 341                   | 51     | 42                                         | 4                                  | 1                         |

Capacity forecast data for the years 2033–2042 are displayed earlier in this presentation. •

### **DER: Overview of Selected Modeling Assumptions**

| Input                                                          | Value                                                                   | Source                                                                                                          |
|----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| PV Capacity Factors <sub>AC</sub> (year 1 of system operation) | 19.5%                                                                   | National Renewable Energy L<br>Watts®, using ELL territory weat<br>Berkeley National Laboratory i               |
| PV System Capital Costs (pre-<br>incentive)                    | Annual residential and comr                                             | mercial values from NREL, <i>Annual</i>                                                                         |
| Standalone Battery System<br>Capital Costs                     | Initial year (2023) BTM lithiu<br>Commis<br>Annual % cost decline rates | m-ion battery system values: Cal<br>ssion (CPUC) proposed IRP inputs<br>for 2024 and after: NREL, <i>Annual</i> |
| Federal Investment Tax Credit for<br>PV                        | 22% in 2023;<br>10% (C&I) and 0%<br>(residential) in 2024 & after       | U.S. Department of Energy (DOE<br>(used values in current law as                                                |
| Retail Electricity Prices                                      | Rate forecasts by customer<br>adjustments for components                | class and overall inflation rates p<br>not offset by PV (e.g., fixed mont<br>of demand charges).                |
| Inflation Rate (applicable to annual O&M and other factors)    | 2%                                                                      | ELL                                                                                                             |
| Battery Storage Roundtrip<br>Efficiency                        | 86%                                                                     | DOE, Energy Storage Tech<br>Characterization                                                                    |
| Annual Performance Degradation (after year 1)                  | 0.5% (PV)<br>1% (Battery System)                                        | PV: NREL guidance<br>Battery System: CPUC pro                                                                   |

aboratory (NREL) PV her data, and Lawrence inverter loading ratios

Technology Baseline

lifornia Public Utilities s

Technology Baseline

E) summary documents s of December 2021)

rovided by ELL. Made hly charges & portions

hnology and Cost n Report

document oposed IRP inputs

### **Residential Battery Storage: Modest Annual Net Production Impacts**

- Assumed that all residential battery storage systems are paired with PV.
  - Due to use cases and system economics. ٠

- Battery storage, unlike PV, increases ELL loads on a net basis.
  - Due to the roundtrip efficiency losses on charging and discharging battery storage. ٠
- Annual sum of residential battery charging in 2042 in <u>high scenario</u>: 55,733 MWh.
- Annual sum of residential battery discharging in 2042 in <u>high scenario</u>: 47,930 MWh.
  - Annual net load impact in residential high scenario: increase of 7,803 MWh. ٠
    - That annual net load impact equals only about 0.05% of total residential load in 2042. •
    - In any given hour, the net impact on ELL's loads can be positive or negative, depending on the aggregate ٠
    - battery charging and discharging behavior of ELL customers at that time.

### C&I Standalone Battery Storage: Notes on Population and Use Case

- Applicable C&I population for standalone battery storage adoption
  - Evaluated ELL tariffs for best economic opportunities for demand reduction by C&I customers. •
  - Less than 150 C&I customers are on tariffs with peak demand charges high enough to potentially • justify economic investment in battery storage.
    - Used sample customer load profiles to evaluate battery storage potential for net monthly demand cost reductions.
- Economic use case
  - Customer cost savings are obtained by charging the battery system during times of low • customer demand and discharging the battery during times of high customer demand to reduce average demand on a monthly basis.
- Estimated economic benefits are calculated by summing demand charge savings, net of battery • roundtrip efficiency losses, and deducting battery system capital costs and annual O&M costs.



### Get in touch with us:

### Ali Bozorgi

**Senior Manager** Ali.Bozorgi@icf.com +1404 929 8328





### About ICF

ICF (NASDAQ:ICFI) is a global consulting and digital services company with over 7,000 full- and part-time employees, but we are not your typical consultants. At ICF, business analysts and policy specialists work together with digital strategists, data scientists and creatives. We combine unmatched industry expertise with cutting-edge engagement capabilities to help organizations solve their most complex challenges. Since 1969, public and private sector clients have worked with ICF to navigate change and shape the future.

